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Abstract

This is the second part of the work that analyses dynamical energy limits for diverse operations with finite rates

important in engineering. Our position is that a dynamic limit of a sufficiently high hierarchy may be helpful in

modelling and design of a prescribed operation. In particular, we treat active systems with coupled heat and mass

transfer important in separation and biological systems. The operations considered occur in separation units, heat and

mass exchangers, energy converters and chemical reactors. The energy limits are expressed in terms of classical exergy

and a residual minimum of entropy generated in equipment of a fixed dimension. To ensure physical limits we treat

sequential work-driven operations, in particular those of dissolving or evaporation which run jointly with thermal

machines (e.g. heat pumps). We also compare structures of optimization criteria describing these limits (in particular

‘‘endoreversible limits’’) in traditional and work-driven operations. Through quantitative analyses we extend to the

realm of mass transfer operations the method initiated in Part I that applies ‘‘Carnot variables’’ as suitable controls.

Functions of extremum work, which apply a residual minimum entropy production, are found in terms of initial and

final states, duration and (in discrete processes) number of stages. Mathematical analogies between entropy production

expressions in traditional and work-driven operations are helpful to formulate optimization criteria in both cases.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Dynamic limits and generalized exergies

In Part I of this work [1] we formulated basic prin-

ciples of integrated physical limits for energy production

or consumption applicable to various traditional and

work-driven operations of chemical and mechanical

engineering. One of major aims of analyses leading to

these limits are quantities of definite physical nature that

still bound practical or industrial processes. The inte-

grated physical limits may be contrasted with so-called

cumulative exergy costs used in thermal engineering or

ecology [2]. The latter are defined in terms of total

consumption of exergy of natural resources necessary to

yield the unit of a definite product. These cumulative

exergy costs are, however, burden by sorts, locations

and dates of various technologies, variable efficiencies,

semiproducts, controls, etc., and, therefore, they do not

constitute objective physical measures. In view of their

non-objectiveness, mathematical properties of cumula-

tive exergy cost and ecological cost are hardly defined;

also corresponding optimal costs remain largely un-

known. In fact, cumulative cost [2] provides a way to

compare diverse energy-consuming technologies rather

than to evaluate energy limits. Yet, technical indica-

tors obtained from cumulative costs may be useful to

forecast changes in demand for heat agents caused by
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variations in production size, technology of product

yield and changes of heat agents.

Importantly, the integrated power criteria are well-

defined functionals of controls and state coordinates,

and their optimal counterparts have properties of func-

tions (potentials). The potential properties of these op-

timal counterparts are ensured due to a well-defined,

unique process that follows from the optimization

method eliminating effect of controls [3]. This is a con-

strained optimization method for a benchmark sequen-

tial operation in which a single resource is produced

with a fixed mean rate from common constituents of the

environment [1,4]. The sequential process that leads to

the production of a resource resembles the one known

from the theory of classical exergy [5,6]. However, there

is one essential difference: the duration of the resource

yield process is constrained to a finite value, and thus

some residual energy dissipation is admitted [3,4]. The

physical limits obtained in this way generalize those

stemming from the classical exergy and exhibit signifi-

cant degree of universality. They are of dynamic nature

and, therefore, they are not only stronger than static, but

are also more useful in design. Our interest is in re-

vealing and systematising such generic limits. These may,

for example, determine lower bound for the amount of

the energy supply or amount of a key substance in equip-

ment of a finite investment, for separation units running

with a prescribed intensity. In brief, we are interested in

‘‘dynamic’’ bounds of physical origin––usually functions

of operational constraints––established under the con-

Nomenclature
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G molar mass flux, total flow rate
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dition that, in any circumstances, the process will run

with a minimum required intensity, yet yielding a desired

product. Complex optimization techniques are used to

obtain dynamic bounds for various processes, including

those for exchange and separation systems.

2. Potential functions and dynamic limits in separation

units

First we recall our assertion that bounds or limits on

the energy production or consumption must be defined

as purely physical quantities, independent on economi-

cal properties [1,4]. Finite-time thermodynamics (FTT)

investigates effects of constraints on time and rate and

bounds constructed on the basis of various optimization

criteria. In particular generalized exergies are defined

and calculated. The exergy bounds are both relevant and

useful; both classical exergy and generalized exergies are

measures of various resources and energy. These criteria

are stated subject the considered assertion: when calcu-

lating energy limits, we search for (hierarchy of) diverse,

purely physical extrema with no regard to economic

optima [1,4]. It is true that a part of the methodological

experience gained from the formulation of mathematical

models and optimization can be preserved when passing

from bound analyses to economic optimization. Yet

approaches to ‘‘optimal design’’ that use the entropy (or

exergy) as their optimization criteria make little sense

from the standpoint of realistic economic design.

The exergy and heat consumed in separation units

can now be treated in general terms without reference to

any specific process, whether it be distillation, desorp-

tion, or drying. This leads to limits on the performance

of separation processes [1,7]. For a given separation ef-

fect the lowest bound for heat consumption is deter-

mined by thermodynamics and is given by the ratio of

the minimum work of separation to the related Carnot

efficiency. However, this limit is unrealistically low, and,

more importantly, it does not correspond to any real

feed flow. An irreversible bound on the heat consumed

in separation processes has been determined as a func-

tion of feed flow [7] and gives a more realistic limit. It

includes the effect of entropy production r and simplifies

to the classical result in the limit of vanishing r. These
results show some resemblance to those known for the

efficiency of thermal engines evaluated at the maximum

power point.

For any finite-rate separation process with a given

nonvanishing mass flow (average mass flow in the case

of cyclic processes) the exergy consumption is larger

than the corresponding reversible consumption. Since

the constraint on the feed flow (and any other con-

straints on e.g. boundary concentrations) is operative,

only a part of the entropy produced can be reduced

through an optimal choice of an operational parameter.

For a given feed flow such a reduction causes a related

decrease in the valuable heat; hence, the minimum of the

heat consumed corresponds indeed to the minimum of r.
Thus, there exists a more realistic lower bound, greater

than the classical value, on the valuable heat consumed.

This bound is a function of the flow F. Any real sepa-

ration process with a given feed flow will consume an

amount of heat that cannot be lower than this limit. This

value is still just a lower bound and is not the econom-

ically optimal heat consumption for any particular

separation unit. Whatever the economical heat con-

sumption is, for a given operational situation this

consumption cannot be less than this lower bound.

Knowledge of this bound is of value for design. A

chemical engineer realizes however that it is not neces-

sary to speak about entropy production at all in order to

determine the lower bound on heat consumption [1,8].

3. Evaluation of work limits in sequential operations with

mass transfer

In this section we first briefly expose several basic

expressions which quantify limits on production or

consumption of mechanical energy in sequential opera-

tions with heat exchange [1,9,10] and next pass to op-

erations with mass exchange, initiated in [11]. The

method involves generally optimization of work flux

from (or to) a sequence of thermal machines thus gen-

eralizing the well-known method of evaluation of the

classical exergy in reversible sequences. The problem of

finite-rate limits requires sequential operations with

thermal machines, such as multistage heat pumps, where

total power input is minimized at constraints that de-

scribe dynamics of energy and mass exchange. The re-

sults are limiting work functions in terms of end states,

duration and (in discrete processes) number of stages [1].

The notation principle for a one-stage work-consuming

unit is illustrated in Fig. 1. This figure simply extends the

unit in Fig. 1 of Part I. A topological scheme of a gen-

eral process of multistage power production or con-

sumption, leading to generalized exergies, is illustrated

in Fig. 2.

Modelling a general work-assisted operation for the

purpose of limits evaluation is a difficult task as it in-

volves abstract (often ‘‘endoreversible’’) models and

their extensions rather than models of real operations,

yet it is consistent with general philosophy of optimi-

zation [3]. The optimization is difficult as well since it

must be performed subject to constraints that take into

account dynamics of heat and mass transport and rate

of real work consumption. However, if the so-called

Carnot intensive parameters (temperatures and chemical

potentials) are used, formal analogies emerge between

entropy production expressions in work-assisted and

in conventional operations. These analogies are very
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helpful to obtain suitable models, criteria and solutions

[1,10,12]. In this paper we shall exploit these analogies to

obtain the energy limits for sequential work-driven op-

erations governed by vector rather than scalar efficien-

cies [13]. The relevant operations involve coupled heat

and mass transfer and are counterparts of well-known

classical operations without work, such as conventional

evaporation, extraction and drying.

To obtain physical limits for real flows with dissipa-

tion in boundary layers the Novikov–Curzon–Ahlborn

(NCA) process is the appropriate benchmark [1,3,13];

the corresponding limits are those for the mechanical or

electrical energy. In an endoreversible engine a resource

fluid drives the Carnot engine from which the work is

taken out. In an endoreversible consumer of work a fluid

(e.g. drying agent) is driven in the condenser of the

Carnot heat pump to which work is supplied. In both

cases the control process can be schematized in Fig. 1.

The fluids are of finite thermal conductivity, hence there

are finite thermal resistances in the system. In a multi-

stage operation the fluid’s state x changes at each stage;

the set of all states (with fluid’s temperatures and con-

centrations as state coordinates) is described by the

vector sequence x0; x1; . . . ; xN . The set of controls (e.g.

Carnot temperatures and concentrations) is represented

by another vector sequence, u0; u1; . . . ; uN . The stage size
control (e.g. the fluid’s holdup time or transfer area) is

usually excluded form the definition of the control vec-

tor u; the set of the related controls is h0; h1; . . . ; hN . The

popular ‘engine convention’ used: work generated in an

engine, W, is positive, and work generated in a heat

pump is negative; this means that a positive work ð�W Þ
is consumed in the heat pump. The sign of the optimal

work function V N ¼ maxW N defines the working mode

for an optimal sequential process as a whole. In engine

modes W > 0 and V > 0. In heat-pump modes, W < 0

and V < 0, thus working with a function RN ¼ �V N ¼
minð�W N Þ is more convenient. The heat-pump modes

correspond with processes that start with x0 ¼ xe and

terminate at a certain xN ¼ x and the engine modes––

with processes that start with x0 ¼ x and terminate at xe.

Their functions V N and RN are generalizations of the

classical exergy for processes with finite durations. In the

considered case of an infinite reservoir, the intensive

parameters of the reservoir, i.e. its temperature T e and

chemical potentials le
i , do not change along the process

path, and this is why these variables reside in the formal

models and potentials as constant parameters. As in the

case of heat-mechanical limits [1], the range of opti-

mizing is restricted to physical limits exclusively, regar-

dles economic conditions of the operation. In the

‘‘endoreversible’’ cases perfect (second-law) efficiency of

the Carnot (work-producing) engines across a finite-

resource stream is essential, in more general cases, for

which the NCA efficiency formula must be generalized,

internal irreversibilities are included.

Work limits follow in terms of the time of state

change and properties of boundary layers and other

dissipators. While the endoreversible modelling is of a

very restricted use in predicting actual work charac-

Fig. 1. Scheme of designations for an irreversible one-stage heat pump on the symbolic state chart.

Fig. 2. A scheme of discrete process with stage size control hn

and other controls un. Bellman’s principle of optimality (forward

algorithm of the dynamic programming method) is applied to

multistage power production or consumption. Elipse-shaped

balance areas pertain to sequential subprocesses that evolve by

inclusion of remaining stages.
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teristics of real thermal machines, FTT models can go

beyond ‘‘endoreversible limits’’ to treat internal dissi-

pations as well, see [1, Eq. 59] and [26]. However, the

most essential issue is that in either of two versions of

FTT, of which the first gives up internal irreversibilities

whereas the second one estimates these from a model,

the FTT limits on energy consumption or production

are stronger than those predicted by the classical exergy.

In the hierarchy of limits resulting from more and more

detailed models, the limits of the second and higher

ranks are stronger than the limits of the first (endore-

versible) rank. The weakest or the worst are limits of

classical thermodynamics; they are limits of zero-th rank

stemming from the classical exergy. Thus, for the pur-

pose of enhanced bounds, any finite-time sequence of

single-stream states in Fig. 2 yields limits of the higher

rank in comparison with the reversible sequence leading

to classical exergy [5]. This follows from the ‘‘process

rate penalty’’ taken into account in every version of

FTT.

4. Lagrange multipliers for limiting operations with mass

transfer

In Part I we have shown remarkable effectiveness of

the Lagrange multiplier method to find optimal tem-

peratures T 0
1 and T 0

2, of fluid circulating in the thermal

Novikov–Curzon–Ahlborn (NCA) operation. Here we

shall extend that approach to all dependent controls

constrained by the entropy and mass balances that

govern the process of simultaneous heat and mass

transfer. Notation used for a single unit and the corre-

sponding multistage operation are respectively depicted

in Figs. 1 and 2.

We consider first a generalized (mass transfer in-

volving) single-stage operation of NCA type in which c

is resource’s specific heat, and r1 and r2 are thermal re-
sistances, the reciprocals of respective conductances g1
and g2 [3]. We restrict ourselves to the case of one active

component diffusing in a stagnant inert (solvent or so-

lid). This case is sufficiently general to present basic

features of the analytical method that solves the problem

of energy limits. In the analysis below we use the tra-

ditional system of process variables based on tempera-

tures and concentrations, i.e. we work without explicit

introduction of chemical potentials. The energy flux e is
the sum of the pure heat flux q and the product of

enthalpy h of the active component and its matter flux,

n, where the latter is simply evaluated in terms of the

corresponding difference of concentrations. In these

coordinates the thermo-diffusional couplings appear in

the energy equation that operates with combination of

traditional driving forces: differences of temperature and

concentration. The concentrations X are referred to the

unit mass of the inert. The expression describing the

power produced in engine mode or consumed in heat-

pump mode has then the form

P ¼ g1ðT1 � T 0
1Þ þ h10 ðT 0

1;X
0
1Þgm1ðX1 � X 0

1Þ � g2ðT 0
2 � T2Þ

� h20 ðT 0
2;X

0
2Þgm2ðX 0

2 � X2Þ: ð1Þ

We stress the influence of concentrations X on partial

entropies of the active component, s10 and s20 . Otherwise
the influence of concentrations X on corresponding

partial enthalpies, h10 and h20 can be ignored. This fol-

lows, in particular, from a typical equation describing

partial enthalpy of active component

h10 ¼
oI
oX 0

1

� �
T 0
1

¼ cðT 0
1 � T0Þ þ r0: ð2Þ

Here r0 is the specific latent heat of phase change

(evaporation heat) for the active component (moisture)

in the reference temperature T0. Equation similar to (2)

holds for the partial enthalpy h20 . The formal setting

r0 � 0 corresponds with absence of phase changes.

The process constraint is the entropy balance in the

form that takes into account the transport of entropy of

active component:

g1ðT1 � T 0
1Þ

T 0
1

þ s10 ðT 0
1;X

0
1Þgm1ðX1 � X 0

1Þ �
g2ðT 0

2 � T2Þ
T 0
2

� s20 ðT 0
2;X

0
2Þgm2ðX 0

2 � X2Þ ¼ 0: ð3Þ

Taking into account the dependence of concentrations

on partial entropies is here mandatory. In fact, partial

entropy s10 of this equation depends on both tempera-

ture T 0
1 and concentration X 0

1 in accord with the equation

s10 ¼
oS
oX 0

1

� �
T 0
1

¼ c ln
T 0
1

T0

� �
� R ln

X 0
1

1þ X 0
1

� �
þ r0
T0

:

ð4Þ

Analogous equation (without r0 term) holds for the

partial entropy s20 .
The modified optimization criterion adjoints con-

straints of entropy and mass balance

P 0 ¼ g1ðT1 � T 0
1Þ þ h10 ðT 0

1;X
0
1Þgm1ðX1 � X 0

1Þ � g2ðT 0
2 � T2Þ

� h20 ðT 0
2;X

0
2Þgm2ðX 0

2 � X2Þ

þ ks
g1ðT1 � T 0

1Þ
T 0
1

�
þ s10 ðT 0

1;X
0
1Þgm1ðX1 � X 0

1Þ

� g2ðT 0
2 � T2Þ
T 0
2

� s20 ðT 0
2;X

0
2Þgm2ðX 0

2 � X2Þ
�

þ kmðgm1ðX1 � X 0
1Þ � gm2ðX 0

2 � X2ÞÞ: ð5Þ

To obtain the extremum conditions of P 0 with respect of

controls T 0
1, T

0
2, X

0
1, and X 0

2 expressions are needed that

describe partial derivatives of partial entropies and en-

thalpies in states 10 and 20 with respect to these controls.
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Using Eqs. (2)–(4) yields the following matrix of partial

derivatives for the state 10

oh01=oT
0
1 ¼ c10 oh01=oX

0
1 ¼ 0

os01=oT
0
1 ¼

c10
T 0
1

os01=oX
0
1 ¼ � R

X 0
1
ð1þX 0

1
Þ

 !
: ð6Þ

For the state 20 the analogous matrix is obtained.

We can now pass to optimization of criterion P 0. We

first find partial derivatives of function P 0 with respect

to control variables and multipliers ks and km. Next we
determine necessary extremum conditions of P 0 with

respect to controls T 0
1, T

0
2, X

0
1, and X 0

2 by setting to zero

corresponding partial derivatives. As the result we ob-

tain the system of six equations containing six unknowns

ks, km, T 0
1, T

0
2, X

0
1 and X 0

2,

ðP 0ÞT 0
1
¼ �g1 þ c10gm1ðX1 � X 0

1Þ

þ ks

 
� g1 �

T1
ðT 0

1Þ
2
þ c10

T 0
1

gm1ðX1 � X 0
1Þ
!

¼ 0; ð7Þ

ðP 0ÞT 0
2
¼ �g2 � c20gm2ðX 0

2 � X2Þ

þ ks

 
� g2 �

T2
ðT 0

2Þ
2
� c20

T 0
2

gm2ðX 0
2 � X2Þ

!
¼ 0; ð8Þ

ðP 0ÞX 0
1
¼ �h10 ðT 0

1Þgm1 þ ks

�
� s10 ðT 0

1;X
0
2Þgm1

� R
X 0
1ð1þ X 0

1Þ
gm2ðX1 � X 0

1Þ
�
� kmgm1 ¼ 0;

ð9Þ

ðP 0ÞX 0
2
¼ �h20 ðT 0

2Þgm2 þ ks

�
� s20 ðT 0

2;X
0
2Þgm2

þ R
X 0
2ð1þ X 0

2Þ
gm2ðX 0

2 � X2Þ
�
� kmgm2 ¼ 0:

ð10Þ
As in the case with pure heat transfer [1], two structur-

ally similar equations are obtained for the multiplier of

entropy balance, ks. Now, however, these equations are
accompanied by two equations for the multiplier of

mass balance, km. In addition, the form of resulting

equations is more complex. After transforming the sys-

tems to get the Lagrange multipliers as explicit quanti-

ties we obtain

�g1 þ c10gm1ðX1 � X 0
1Þ

g1
T1

ðT 0
1
Þ2 �

c10
T 0
1

gm1ðX1 � X 0
1Þ

¼ �g2 � c20gm2ðX 0
2 � X2Þ

g2
T2

ðT 0
2
Þ2 þ

c20
T 0
2

gm2ðX 0
2 � X2Þ

¼ ks;

ð11Þ

� h10 ðT 0
1Þ þ ksðgm1Þ�1

�
� s10 ðT 0

1;X
0
1Þgm1 �

R
X 0
1ð1þ X 0

1Þ

	 gm2ðX1 � X 0
1Þ
�

¼ �h20 ðT 0
2Þ þ ksðgm2Þ�1

�
� s20 ðT 0

2;X
0
2Þgm2

þ R
X 0
2ð1þ X 0

2Þ
gm2ðX 0

2 � X2Þ
�

¼ km;

ð12Þ

g1ðT1 � T 0
1Þ

T 0
1

þ s10 ðT 0
1;X

0
1Þgm1ðX1 � X 0

1Þ �
g2ðT 0

2 � T2Þ
T 0
2

� s20 ðT 0
2;X

0
2Þgm2ðX 0

2 � X2Þ ¼ 0; ð13Þ

gm1ðX1 � X 0
1Þ � gm2ðX 0

2 � X2Þ ¼ 0: ð14Þ

Note that entropy multiplier, ks, is defined in Eq. (11) in

terms of process variables by each of two expressions of

this equation. Similarly, the matter multiplier, km, is
defined in terms of ks and process variables by each of

two expressions in Eq. (12). This means that the Lag-

range multipliers are, in fact, eliminated, i.e. four

equations obtained after rejection of Lagrange multi-

pliers on right hand sides of the set (11)–(14) define

optimal values of four control variables T 0
1, T

0
2, X

0
1 and

X 0
2. The discussed equations describe relations between

temperatures and concentrations of circulating fluid at

the optimal power point of the system. In case of ab-

sence of mass transfer these equations simplify to a

simple set

�ðT 0
1Þ

2

T1
¼ �ðT 0

2Þ
2

T2
¼ k; ð15Þ

g1ðT1 � T 0
1Þ

T 0
1

¼ g2ðT 0
2 � T2Þ
T 0
2

: ð16Þ

This result was obtained in Part I for heat-mechanical

processes. The reader is referred to Part I for compre-

hensive discussion of solution of this equation system.

Let us return to the general system, Eqs. (11)–(14).

Without loss of generality, this system can be simplified

by determining one of the concentrations, X 0
1 or X

0
2 from

the mass balance (14) and substituting the so-obtained

concentration to the remaining equations. Assume, for

concreteness, that concentration X 0
1 was eliminated. In

this way we obtain a system of three nonlinear equations

with three variables T 0
1, T

0
2, and X 0

2 that is not susceptible

for further reduction of variables. Without any further

simplifications, the general equation set (11)–(14) or its

equivalent system simplified as described (with variables

T 0
1, T

0
2, and X 0

2) can be solved numerically by Newton–

Raphson method ([13] of Part I). This method is effi-

cient, and its convergence is fast.

The numerical solution constitutes the optimal data

of optimal controls (T 0
1, T

0
2, X

0
1 and X 0

2) for a given state in

the bulk of both fluids (T1, T2, X1 and X2). Iterating

calculations for changed states of bulk (T1, T2, X1 and X2)

changes numerical values of optimal controls T 0
1, T

0
2, X

0
1

and X 0
2. In this way tables are generated that describe

optimal controls as state functions of coordinates of

both fluids (driving fluid of the engine and reservoir

fluid). Each optimal decision not only satisfies balance

equations (constraints) but also ensures the maximum

power yield in engine mode of the system.

However, in number of real applications, some spe-

cial simplifications are further appropriate; in these cases
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yet simpler equation systems are obtained, discussed

below.

At the price of a simplification, which is the re-

placement of temperatures T1 and T2 in expressions for

entropy transferred with mass by the reference temper-

ature T0, further reduction of variables in the resulting

system of equations can be made. As the result, the

simplified problem may be broken down to solving only

two nonlinear equations. This procedure exploits ex-

plicit formulae for partial enthalpies and entropies of

active component

h10 ¼
oI
oX 0

1

� �
T 0
1

¼ cðT 0
1 � T0Þ þ r0; ð17Þ

s10 ¼
oS
oX 0

1

� �
T 0
1

¼ c ln
T 0
1

T0

� �
� R ln

X 0
1

1þ X 0
1

� �
þ r0
T0

:

ð18Þ

This equation set describing an optimal process takes

then the form

�g1 þ c10gm2ðX 0
2 � X2Þ

g1
T1

ðT 0
1
Þ2 �

c10
T0
gm2ðX 0

2 � X2Þ
¼ �g2 � c20gm2ðX 0

2 � X2Þ
g2

T2
ðT 0

2
Þ2 þ

c20
T0
gm2ðX 0

2 � X2Þ
;

ð19Þ

� cðT 0
1 � T0Þ � r0 þ ksðgm1Þ�1

�
� gm1 c ln

T 0
1

T0

� ��

� R ln
X 0
1

1þ X 0
1

� �
þ r0
T0

�
� R
X 0
1ð1þ X 0

1Þ
gm2ðX 0

2 � X2Þ
�

¼ �cðT 0
2 � T0Þ � r0 þ ksðgm2Þ�1

�
� gm2 c ln

T 0
2

T0

� ��

� R ln
X 0
2

1þ X 0
2

� �
þ r0
T0

�
þ R
X 0
2ð1þ X 0

2Þ
gm2ðX 0

2 � X2Þ
�
;

ð20Þ

g1ðT1 � T 0
1Þ

T 0
1

þ c ln
T 0
1

T0

� ��
� R ln

X 0
1

1þ X 0
1

� �
þ r0
T0

�

	 gm2ðX 0
2 � X2Þ ¼

g2ðT 0
2 � T2Þ
T 0
2

þ c ln
T 0
2

T0

� ��
� R ln

X 0
2

1þ X 0
2

� �
þ r0
T0

�
gm2ðX 0

2 � X2Þ;

ð21Þ

X 0
1 ¼ X1 � ðgm2=gm1ÞðX 0

2 � X2Þ: ð22Þ

With Eq. (19) we subsequently obtain

g1 � T1
ðT 0

1
Þ2 �

c10
T0
gm2ðX 0

2 � X2Þ

�g1 þ c10gm2ðX 0
2 � X2Þ

¼
g2 � T2

ðT 0
2
Þ2 þ

c20
T0
gm2ðX 0

2 � X2Þ

�g2 � c20gm2ðX 0
2 � X2Þ

ð23Þ

and

T1
ðT 0

1Þ
2
¼ c10

T0

gm2
g1

ðX 0
2 � X2Þ þ

ð�g1 þ c10gm2ðX 0
2 � X2ÞÞ

ð�g2 � c20gm2ðX 0
2 � X2ÞÞ

	 g2
g1

� T2
ðT 0

2Þ
2

 
þ c20

T0

gm2
g1

ðX 0
2 � X2Þ

!
: ð24Þ

Hence

This equation describes the connection between tem-

peratures of circulating fluid at the optimal power point

of the system. It constitutes a generalization of a result

obtained in Part I, [1], for operations with pure heat

transfer

T 0
1 ¼

ffiffiffiffiffi
T1
T2

r
� T 0

2: ð26Þ

Indeed, for vanishing conductances of mass transfer gmi

(i ¼ 1, 2) Eq. (25) simplifies to Eq. (26).

Expression in Eq. (25) describes temperature T 0
1 as

function of (variable) state coordinates of both fluids

(T1, T2, X1 and X2) and controls. This function must be

substituted into two equations. The first is Eq. (20) that

describes multiplier of the mass balance, whereas the

second is Eq. (21) that describes the entropy balance.

Thus the situation is more complicated than in the case

of pure heat transfer, where only entropy balance was

needed to solve the problem of this sort. The solution of

the discussed problem is described by two equations of

the form

cðT 0
2 � T 0

1Þ þ r0 þ ksðT 0
2;X

0
2Þ c ln

T 0
2

T 0
1

� ���

þ R ln
X 0
2

1þ X 0
2

� �
X 0
1

1þ X 0
1

�
þ r0
T0

�

þ R
X 0
2ð1þ X 0

2Þ

�
� R
X 0
1ð1þ X 0

1Þ
gm2
gm1

�
ðX 0

2 � X2Þ
	

¼ 0

ð27Þ

T 0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1
T2

c10
T0T2

gm2
g1

ðX 0
2 � X2Þ þ

ð�g1 þ c10gm2ðX 0
2 � X2ÞÞ

ð�g2 � c20gm2ðX 0
2 � X2ÞÞ

g2
g1

� 1

ðT 0
2Þ

2
þ c20
T0T2

gm2
g1

ðX 0
2 � X2Þ

 !( )�1
vuut : ð25Þ
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and

g1ðT1 � T 0
1Þ

T 0
1

þ gm2ðX 0
2 � X2Þ c10 ln

T 0
1

T 0
2

� ��

þ R ln
X 0
2

1þ X 0
2

� �
X1 � ðgm2=gm1ÞðX 0

2 � X2Þ
1þ X1 � ðgm2=gm1ÞðX 0

2 � X2Þ

�

þ r0
T0

	
� g2ðT 0

2 � T2Þ
T 0
2

¼ 0: ð28Þ

In this set, multiplier ksðT 0
2;X

0
2Þ and temperature

T 0
1ðT 0

2;X
0
2Þ are known functions defined by Eqs. (19) and

(25), whereas concentration X 0
1 is expressed in terms of

concentration X 0
2 as required by mass balance (22). (This

is explicitly shown in the second equation of the con-

sidered system.)

Similarly as general necessary conditions, Eqs. (11)–

(14), the simplified set, i.e. two Eqs. (27) and (28) must

be solved numerically. The results are optimal values of

controls T 0
2 and X 0

2. Next, remaining controls, T
0
1 and X 0

1,

are computed from already known equations. After

getting optimal controls at maximum power conditions,

numerical values of heat fluxes, q1 and q2, and corre-

sponding fluxes of energy, e1 and e2, are calculated.

Next, maximum power P is calculated as the difference

e1 � e2 at the optimal point. Efficiencies of energy con-

version in the system then follow. In conclusion, the

elimination of Lagrange multipliers is an easy task as

they are imbeded linearly in the necessary conditions of

optimality. However, there are difficulties in eliminating

physical variables from the system of extremum condi-

tions, in view of (generally) nonlinear nature of opti-

mization criterion and balance constraints.

5. Model using Onsager symmetries for coupled heat and

mass transfer

Here we consider another formulation in which On-

sager theory is applied to treat work-driven operations

with coupled heat and mass transfer. Equations of

coupled exchange of energy and matter in the first fluid

have the form

� _HH1 ¼ lHH1 ðT 0�1
1 � T�1

1 Þ þ lHN1
l1

T1

�
� l10

T 0
1

�
; ð29Þ

� _XX1 ¼ lHN1 ðT 0�1
1 � T�1

1 Þ þ lNN1
l1

T1

�
� l10

T 0
1

�
; ð30Þ

whereas those in the second fluid are

� _HH2 ¼ lHH2 ðT�1
2 � T 0�1

2 Þ þ lHN2
l20

T 0
2

�
� l2

T2

�
; ð31Þ

� _XX2 ¼ lHN2 ðT�1
2 � T 0�1

2 Þ þ lNN2
l20

T 0
2

�
� l2

T2

�
: ð32Þ

Consequently, the power produced in engine mode or

consumed in heat-pump mode can be written in the form

P ¼ lHH1 ðT 0�1
1 � T�1

1 Þ þ lHN1
l1

T1

�
� l10

T 0
1

�
� lHH2 ðT�1

2 � T 0�1
2 Þ

� lHN2
l20

T 0
2

�
� l2

T2

�
: ð33Þ

The constraint of entropy balance across the perfect

engine has the form

1

T 0
2

_HH2 �
l20

T 0
2

_XX2 �
1

T 0
1

_HH1 þ
l10

T 0
1

_XX1 ¼ 0: ð34Þ

Explicitly, in view of Eqs. (29)–(32), the entropy con-

straint reads

CS �
1

T 0
1

lHH1 ðT 0�1
1

�
� T�1

1 Þ þ lHN1
l1

T1

�
� l10

T 0
1

��

� 1

T 0
2

lHH2 ðT�1
2

�
� T 0�1

2 Þ þ lHN2
l20

T 0
2

�
� l2

T2

��

� l10

T 0
1

lHN1 ðT 0�1
1

�
� T�1

1 Þ þ lNN1
l1

T1

�
� l10

T 0
1

��

þ l20

T 0
2

lHN2 ðT�1
2

�
� T 0�1

2 Þ þ lNN2
l20

T 0
2

�
� l2

T2

��
¼ 0:

ð35Þ

On the other hand the explicit form of the mass balance

constraint � _XX1 þ _XX2 ¼ 0 is

CN � lHN1 ðT 0�1
1 � T�1

1 Þ þ lNN1
l1

T1

�
� l10

T 0
1

�
� lHN2 ðT�1

2 � T 0�1
2 Þ

� lNN2
l20

T 0
2

�
� l2

T2

�
¼ 0: ð36Þ

We can now pass to optimization of criterion P 0 that

adjoints constraints by Lagrange multipliers

P 0 ¼ P þ kSCS þ kNCN : ð37Þ

The control variables are T�1
10 , T

�1
20 , l10=T

0
1 and l20=T

0
2. We

find partial derivatives of function P 0 with respect to

these controls and multipliers kS and kN and determine

necessary extremum conditions of P 0 by setting to zero

corresponding partial derivatives. As the result we ob-

tain the system of six equations containing six unknowns

kS , kN , T�1
10 , T

�1
20 , l10=T

0
1 and l20=T

0
2. For the purpose of

brevity only implicit form of these conditions is given

below

oP 0

oT�1
10

¼ oP
oT�1

10
þ kS

oCS

oT�1
10

þ kN
oCN

oT�1
10

¼ 0; ð38Þ

oP 0

oT�1
20

¼ oP
oT�1

20
þ kS

oCS

oT�1
20

þ kN
oCN

oT�1
20

¼ 0; ð39aÞ

oP 0

oðl10=T
0
1Þ

¼ oP
oðl10=T

0
1Þ
þ kS

oCS

oðl10=T
0
1Þ
þ kN

oCN

oðl10=T
0
1Þ

¼ 0;

ð39bÞ
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oP 0

oðl20=T
0
2Þ

¼ oP
oðl20=T

0
2Þ
þ kS

oCS

oðl20=T
0
2Þ
þ kN

oCN

oðl20=T
0
2Þ

¼ 0;

ð40Þ

oP 0

okS
¼ CS ¼ 0; ð41Þ

oP 0

okN
¼ CN ¼ 0: ð42Þ

As these equations are linear with respect to Lagrange

multipliers, these multipliers can easily be eliminated,

similarly as those in previous sections. In this way we

obtain a system of four necessary optimality conditions

that should be solved with respect to control variables

T�1
10 , T

�1
20 , l10=T

0
1 and l20=T

0
2. Numerical examples of so-

lution are relegated to another paper, where also a dis-

cussion of the physical properties of the solution will be

presented.

6. Carnot temperatures and chemical potentials in dy-

namical operations with mass transfer

We shall now prepare ourselves to application of

Carnot temperatures and chemical potentials in opera-

tions with mass transfer. At first, we adduce suitable

form of transfer equations that uses resistances, or ele-

ments of matrix inverse with respect to the conductance

matrices L1 and L2 whose elements were used until now.

These equations operate (primed) transfer potentials,

temperatures and Planck chemical potentials of circu-

lating fluid. For the first fluid as the (controlled) phase 1

we have

1

T1
� 1

T 0
1

¼ rHH1 _HH1 þ rHX1 _XX1; ð43Þ

l10

T 0
1

� l1

T1
¼ rXH1 _HH1 þ rXX1 _XX1: ð44Þ

Similarly, for the second fluid as phase 2 or thermal

reservoir

1

T 0
2

� 1

T2
¼ rHH2 _HH2 þ rHX2 _XX2; ð45Þ

l2

T2
� l20

T 0
2

¼ rXH2 _HH2 þ rXX2 _XX2: ð46Þ

These relationships satisfy structure of matrix Ohm’s

law for coupled transfer processes. Their usefulness will

be shown below, where dynamical processes in terms of

Carnot potentials of transfer are introduced and ana-

lyzed.

Considering Stefan diffusion of active component in

an inert we shall now introduce Carnot temperature T 0

and Carnot chemical potential of the component, l0. For

simplicity of designations we shall neglect the subscript 1

for the first (controlled) fluid. Again, medium 2 is iden-

tified with an infinite reservoir or environment (in the

last case T2 � T e).

From the power balance known from an analysis of

the operation [11,12]

P ¼ e1 1

�
� T 0

2

T 0
1

�
þ n1T 0

2

l0
1

T 0
1

�
� l0

2

T 0
2

�
; ð47Þ

where e1 ¼ � _HH1 and n1 ¼ � _XX1 are interphase fluxes of

energy and matter. Analyzing the first term of this

equation we conclude that the definition of Carnot

temperature remains the same as in the case with pure

heat transfer, i.e.

T 0 � T2
T 0
1

T 0
2

ð48Þ

(see Part I, [1]). On the other hand, Eq. (47) and its re-

versible counterpart prove that the Carnot chemical

potential should satisfy the equation

T 0
2

l0
1

T 0
1

�
� l0

2

T 0
2

�
¼ T2

l0

T 0

�
� l2

T2

�
: ð49Þ

This leads to following thermodynamic definition of

Carnot chemical potential

l0 ¼ T 0 l2

T2

�
þ T 0

2

T2

l0
1

T 0
1

�
� l0

2

T 0
2

�	
: ð50Þ

We shall consider application of Carnot variables T 0 and

l0 in dynamical processes, that means those processes in

which at least one of the energy sources is finite (and

thus it may exhaust). Here we assume that it is the upper

reservoir that is finite, and that the lower reservoir re-

mains infinite (it constitutes a constant environment).

The optimization criterion, that defines energy limit,

is a curvilinear integral describing power P per unit mass

flux of driving fluid. This is, in fact, the specific work

generated or consumed by the system, which is the sys-

tem with fluid at flow. An analysis [11,12] leads to

general equation linking specific work and entropy

production

W ¼ P=G ¼ �
Z T f

T i
ð1
�

� T2=T 0ÞdH þ T2ðl0=T 0

� l2=T2ÞdN
�

¼ �
Z T f

T i
ð1f � T2=T ÞdH þ T2ðl=T � l2=T2ÞdNg

� T2

Z T f

T i
ð1=T
�

� 1=T 0ÞdH þ ðl0=T 0 � l2=T2ÞdN
�
:

ð51Þ

This equation describes the specific work produced

(consumed) by the fluid controlled along its flow, and

the link of that work with the entropy production. H is

the enthalpy of the solution per unit mass of the inert or

solvent and X is the corresponding concentration of
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active component (e.g. moisture or polymer). The

Gouy–Stodola law links the real work W (the first in-

tegral) with the reversible work W rev (the second inte-

gral) and the negative product of T2 and the entropy

production (the third integral). The driving chemical

potential, l0, appears here as an extra operational vari-

able in the sense that it is absent in the set of variables

appearing in the optimization solution. Eq. (51) refers to

the ‘‘endoreversible’’ limit, but it may easily be gener-

alized to processes with internal dissipation as we have

shown in [1].

Eq. (51) incorporates the result of the entropy pro-

duction invariance in a work-assisted operation with

respect to the transformation of variables. This equation

exploits the fact that an original expression for the en-

tropy production is in terms of upper and lower thermal

potentials of the fluid circulating in the thermal machine

(T 0
1, T

0
2, l10 and l20 ). From this original expression the

appropriate result for T 0 as function T 0ðT 0
1, T

0
2, T2) is the

same as for the processes with pure heat transfer, and it

can be written in the form (48). Likewise, in terms of

upper and lower thermal potentials of the circulating

fluid (T 0
1, T

0
2, l10 and l20 ), the driving chemical potential

l0 follows as quantity described by Eq. (50). The asso-

ciated model of control involves the process in which an

external immiscible phase with the controlling parame-

ters T 0 and l0 (or H 0 and X 0) exchanges energy and mass

with the controlled solution. In particular, that model

can accomodate the Onsagerian scheme of coupling in

the heat and mass transfer. Here our choice of the state

and control variables is caused by the fact that the most

appropriate form of energy balance for a fluid at flow is

in terms of the enthalpy.

Note that the theorem applies according to which the

equality T 0 ¼ T2 at short-circuit point, where T 0
1 ¼ T 0

2,

consistent with Eq. (48). Similarly, at short-circuit point,

where l10 ¼ l20 , the equality l0 ¼ l2 holds which implies

that the generalized theorem (including mass transfer) is

valid. Again, the most essential result obtained here is

the conclusion that in terms of the driving temperature

T 0 and driving chemical potential l0 the entropy pro-

duction in a work-assisted process acquires the form of

the entropy production for a traditional process without

any work production. Accordingly, we can implement

entropy production formulas that are known for tradi-

tional processes of nonisothermal mass transfer (without

work flux) into work formulae describing processes with

thermal machines.

The basic conclusion here is similar as in case of

processes with pure heat transfer [1]: the entropy pro-

duction of an operation with a thermal machine can be

expressed by certain control quantities, temperature T 0

and chemical potential l0, structural properties of the

system. In terms of these quantities the expression for

entropy production in endoreversible systems with work

flux acquires form the same as in traditional process of

heat and mass exchange (without work production or

consumption). This property allows for simultaneous

development of thermodynamics of endoreversible

thermal machines and traditional heat and mass ex-

changers, and also for application of well-known for-

mulas of classical nonequilibrium thermodynamics in

theory of endoreversible thermal machines.

Consequently, we should derive a suitable formula

for entropy production in conventional operations that

will model the entropy production in operations with

thermal machines. The specific entropy produced per

unit mass of the mixture is the path integral over the

scalar product of the differential enthalpy–mass vector

ðdH ; dX Þ and the driving force vector ð1=T � I=T 0,

l=T � l0=T 0Þ. With the kinetics in the form of the

functions describing rates and expressed in terms of the

process intensities, the discussed integral has the form

Sr ¼
Z T f

T i
ð1=T � 1=T 0ÞdH � ðl=T � l0=T 0ÞdX

¼
Z tf

ti
ð1=T
n

� 1=T 0Þ _HHðT ; T 0; l; l0Þ þ ðl0=T 0 � l=T Þ

	 _XX ðT ; T 0; l; l0Þ
o
dt: ð52Þ

In this form the entropy production equation can in-

corporate arbitrarily complex nonlinear relationships of

thermodynamic and kinetic origin. By using Eq. (52) in

work formula (51), changes of work potentials and

finite-time exergies associated with minimum inevitable

entropy production can be evaluated through optimi-

zation. Taking into account potential nature of first term

in the two last lines of Eq. (51) we first integrate it to

obtain the form

W ¼ P=G

¼ �
Z T f

T i
ð1
�

� T2=T 0ÞdH þ T2ðl0=T 0 � l2=T2ÞdX
�

¼ H i � H f � T2ðSi � SfÞ � l2ðX i � X fÞ � T2

	
Z T f

T i
ð1=T
n

� 1=T 0Þ _HH þ ðl0=T 0 � l=T Þ _XX
o
dt:

ð53Þ

The result of integration is the first term of the second

line that is path-independent term. This term represents

a change of classical exergy whenever parameters of

infinite thermal reservoir are equal to those in environ-

ment. The path dependence of work is caused by the

second term of Eq. (53) containing the product of T2 and
entropy production per unit mass of inert. This proves

that, for fixed end problem, the integral of entropy

produced, singled out from the second line of Eq. (53),

can constitute the optimization criterion alternative with

respect to the work criterion. But this is just our Eq.

(52). Its basic role is supported by the observation that

control parameters appear only in the entropy produc-
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tion integral. In fact, this integral is a curvilinear integral

over the product of the differential state vector (dH, dX)

and vector of driving force ð1=T � 1=T 0, l=T � l0=T 0).

After extremizing Eq. (53) with respect to controls T 0

and l0 optimal work functions R and V are found, which

generalize solutions to Eq. (57) of Part I by inclusion of

mass transfer.

However, our handling of kinetics is implicit up to

this point. In fact, extremizing of work (or associated

entropy production) must be carried out subject differ-

ential constraints describing overall kinetics of the pro-

cess. These differential constraints link coordinates of

controlled phase with those of controlling phase. The

latter coordinates are, within the formalism accepted

here, Carnot variables that are optimized. The simplest

(linear) form of differential constraints satisfying Onsa-

gerian symmetries and having incorporated Carnot

controls is derived below. The closing aim of the pro-

cedure is to build these constraints in the entropy opti-

mization criterion.

To formulate and handle kinetic constraints in an

explicit way, we use the theorem of Part I [1] in its

generalized form including mass transfer processes. It

tells us that in the special case without any work pro-

duction (i.e. at short-circuit point) expressions for the

driving thermal parameters (T 0, l0, H 0, X 0, etc.) in terms

of the state variables (T, l, H, X, etc.) and their time

derivatives ( _TT , _ll, _HH , _XX , etc.) describe the environment

(or reservoir) parameters. Thus by exploiting a given

classical kinetics (the one which governs the process

without work production) we determine intensive pa-

rameters of driving states. We thus obtain constraints

that describe an overall classical kinetics under action of

overall driving forces.

Here we apply the kinetic model of the coupled linear

kinetics that satisfies Onsager’s reciprocity relations. For

the first fluid as controlled phase Eqs. (43) and (44) of

previous section are valid

1

T1
� 1

T 0
1

¼ rHH1 _HH1 þ rHN1 _XX1; ð43Þ

l10

T 0
1

� l1

T1
¼ rNH1 _HH1 þ rXX1 _XX1: ð44Þ

Similarly, for the second fluid as phase 2 or thermal

reservoir, Eqs. (45) and (46) hold

1

T 0
2

� 1

T2
¼ rHH2 _H2H2 þ rHX2 _XX2; ð45Þ

l2

T2
� l20

T 0
2

¼ rXH2 _HH2 þ rXX2 _XX2: ð46Þ

In particular, these kinetic equations hold at the purely

dissipative state (short circuit point) of the system where

there is no work production (T 0
1 ¼ T 0

2 and l10 ¼ l20 ), the

energy and mass fluxes are continuous through the inter-

face (i.e. _HH1 ¼ _HH2 ¼ _HH and _XX1 ¼ _XX2 ¼ _XX ), and the iden-

tities T2 ¼ T 0 and l2 ¼ l0 hold. Applying these identities

in Eqs. (43)–(46) we find

1

T 0
1

¼ 1

T1
� rHH1 _HH1 � rHN1 _XX1; ð54Þ

l10

T 0
1

¼ l1

T1
þ rNH1 _HH1 þ rXX1 _XX1 ð55Þ

and

1

T 0
2

¼ 1

T 0 þ rHH2 _HH2 þ rHX2 _XX2 ð56Þ

l20

T 0
2

¼ l0

T 0 � rXH2 _HH2 � rXX2 _XX2: ð57Þ

(As in Eqs. (52) and (53), subscript 1 of the resource

fluid may be omitted.) After substituting T 0
1 ¼ T 0

2 and

l10 ¼ l20 and taking respective differences of above

equations we obtain the driving intensities T 0 and l0 in

the form

1

T 0 ¼
1

T1
� ðrHH1 þ rHH2 Þ _HH1 � ðrHX1 þ rHX2 Þ _XX1 ð58Þ

and

l0

T 0 ¼
l1

T1
þ ðrXH1 þ rXH2 Þ _HH1 þ ðrXX1 þ rXX2 Þ _XX1: ð59Þ

Consequently, the overall kinetics in terms of driving

and controlled intensities, i.e. in the form that applies in

Eqs. (52) and (53), is represented by the equations

1

T1
� 1

T 0 ¼ rHH _HH1 þ rHX _XX1; ð60Þ

l0

T 0 �
l1

T1
¼ rXH _HH1 þ rXX _XX1: ð61Þ

(See next section for equivalent equations in terms of

conductances.) With these equations and Onsager’s re-

ciprocity relations, entropy production (52) assumes the

classical form

Sr ¼
Z T f

T i

ð1=T1 � 1=T 0ÞdH1 þ ðl0=T 0 � l1=T1ÞdX1

¼
Z tf

ti
frHH _HH 2 þ 2rHX _HH _XX þ rXX _XX 2gdt ð62Þ

or

Sr ¼
Z T f

T i

ð1=T1 � 1=T 0ÞdH1 þ ðl0=T 0 � l1=T1ÞdX1

¼
Z tf

ti
fgHH ð1=T1 � 1=T 0Þ2 þ 2gHX ð1=T1 � 1=T 0Þ

	 ðl0=T 0 � l1=T1Þ þ gXX ðl0=T 0 � l1=T1Þ
2gdt: ð63Þ

The second integral contains kinetic constraints, Eqs.

(43)–(46), built in the integral (52). The positiveness of

conductance matrix g proves that the second law of

thermodynamics is satisfied identically by model based

on Onsager’s theory.
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For a related multistage process, i.e. the cascade in

Fig. 2, the entropy production is

SN
r ¼

XN
1

gHH ð1=T n
1

n
� 1=T 0nÞ2 þ 2gHX ð1=T n

1 � 1=T 0nÞ

	 ðl0n=T 0n � ln
1=T

n
1 Þ þ gXX ðl0n=T 0n � ln

1=T
n
1 Þ

2
o
hn:

ð64Þ
For constant (state independent) resistances, the trajec-

tory optimizing integral criteria (62) and (63) is char-

acterized by the constancy of rate vector along the path.

This is a generalization of a result that is well known for

heat-mechanical processes without mass transfer [1,3].

(See also Refs. [53,54] and [56–58] in [1].)

In conclusion, in spite of work flux in the system, we

have obtained functionals of entropy production that

preserve formal structures the same as those in tradi-

tional processes (without work). Use of Carnot variables

was crucial to achieve that formalism. Optimization of

entropy production in typical processes under assump-

tion of constancy of coefficients leads quite generally to

constancy of the entropy production intensity along an

optimal path. For quadratic entropy production, opti-

mization of both functionals (those of work and those

of entropy production, Eqs. (53) and (62)), imply con-

stancy of driving forces along an optimal path. These

properties are sometimes imbeded in the so-called prin-

ciple of equipartition of the entropy production or

principle of equipartition of thermodynamic forces [1,3].

However, the ‘principle’ is valid only when there is no

constraints imposed on parameters of the controlling

phase. In the case of operative constraints, the principle

is violated. Postquadratic terms in the optimization

criterion and nonlinearities in kinetic equations may also

cause violation of the principle.

7. Unification of energy limits in operations with and

without work

Let us now focus on limiting properties of the opti-

mal models. Consider, for example, Eq. (53) in the op-

timal case. In terms of the Carnot temperatures and

chemical potentials, T 0 and l0, the limiting minimum

work in engine mode can be described by the optimal

performance function

RðT i; T f ;X i;X f ; sf � siÞ

� maxðP=Gf Þ ¼ �
Z T f

T i
fð1� T2=T 0ÞdH

þ T2ðl0=T 0 � l2=T2ÞdXg
¼ H i � H f � T2ðSi � SfÞ � l2ðX i � X fÞ � T2

	min

Z tf

ti
fgHH ð1=T1 � 1=T 0Þ2 þ 2gHX ð1=T1 � 1=T 0Þ

	 ðl0=T 0 � l1=T1Þ þ gXX ðl0=T 0 � l1=T1Þ
2gdt:

ð65Þ

Likewise, for heat-pump mode, where work is consumed

RðT i; T f ;X i;X f ; sf � siÞ

� minð�P=Gf Þ ¼ �
Z T f

T i

fð1� T2=T 0ÞdH

þ T2ðl0=T 0 � l2=T2ÞdXg
¼ H f � H i � T2ðSf � SiÞ � l2ðX f � X iÞ þ T2

	min

Z tf

ti
fgHH ð1=T1 � 1=T 0Þ2 þ 2gHX ð1=T1 � 1=T 0Þ

	 ðl0=T 0 � l1=T1Þ þ gXX ðl0=T 0 � l1=T1Þ
2gdt:

ð66Þ

This equation generalizes exergy cost of production of a

definite resource in finite time, Eq. (57) of Part I [1], to

the case of operations with coupled heat and mass

transfer. It also describes the ‘‘endoreversible’’ limit for

minimum mechanical energy supplied to achieve a pre-

scribed separation of the fluid mixture. These formulae

may easily be generalized to processes with internal

dissipation as we have shown in [1]. Note that in re-

versible case, the maximum work in the engine mode is

described by the optimal function V rev ¼ �Rrev. Eq. (66)

serves in the realm of thermal machines as a represen-

tation of their limiting work. The minimization in Eq.

(66) automatically eliminates the controlling (primed)

parameters from Sr, thus generating the potential Rr

that depends only on the initial and final states and the

process duration.

In both modes described by Eqs. (65) and (66) state

and control variables are linked by overall differential

constraints (60) and (61). These constraints can also be

written in a more common form using overall conduc-

tances

_HH1 ¼ gHH
1

T1

�
� 1

T 0

�
þ gHX

l0

T 0

�
� l1

T1

�
ð67Þ

and

_XX1 ¼ gXH
1

T1

�
� 1

T 0

�
þ gXX

l0

T 0

�
� l1

T1

�
: ð68Þ

In these equations ðgHX Þ�1 ¼ ðgHX1 Þ�1 þ ðgHX2 Þ�1 are over-
all conductances that constitute the symmetric ma-

trix g.

For multistage processes with heat pumps or engines

a fully analogous discrete picture exists with sums re-

placing integrals and differential ratios instead of de-

rivatives. The discrete counterparts of optimal cost

functions (65) and (66) are then associated with mini-

mum of the entropy production (64). For example,

in heat-pump mode the same entropy production ap-

pears in work expression for the limiting sequential

operation
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RN ðT 0; T N ;X 0;XN ; sN � s0Þ
� minð�PN=Gf Þ ¼ HN � H 0 � T2ðSN � S0Þ

� l2ðXN � X 0Þ þ T2 min
XN
1

fgHH ð1=T n
1 � 1=T 0nÞ2

þ 2gHX ð1=T n
1 � 1=T 0nÞðl0n=T 0n � ln

1=T
n
1 Þ

þ gXX ðl0n=T 0n � ln
1=T

n
1 Þ

2ghn: ð69Þ

This is ‘‘exergy cost of production’’ of a definite resource

in finite time and in sequential operation with finite

number of stages, the physical energy limit as counter-

part of cumulative exergy cost known in thermal engi-

neering and ecology [2]. Optimization in this criterion is

subject to the following difference constraints

Hn
1 � Hn�1

1

hn ¼ gHH
n 1

T n
1

�
� 1

T 0n

�
þ gHX

n l0n

T 0n

�
� ln

1

T n
1

�
ð70Þ

and

Xn
1 � Xn�1

1

hn ¼ gXH
n 1

T n
1

�
� 1

T 0n

�
þ gXX

n l0n

T 0n

�
� ln

1

T n
1

�
: ð71Þ

tn1 � tn�11

hn ¼ 1: ð72Þ

The last constraint represents definition of the time in-

terval, which is a measure of the stage size. Extra local

constraints can be added to the set (72) including size

limitations. For details of optimization procedure based

on a discrete algorithm of Pontryagin’s type the reader is

referred to literature [3,4].

Eqs. (65), (66) and (69) describe endoreversible limits

for mechanical energy consumption between two given

states and for a given number of transfer units associ-

ated with finite holdup time. Even these limits are

stronger than that those predicted by the classical ex-

ergy. What can be said about yet stronger limits which

involve internal dissipation in the participating thermal

machines? For limits of higher rank Eqs. (65), (66) and

(69) are replaced by their generalizations including in-

ternal entropy generation within engines as additive

components of the entropy generation, Sr. Here we

need to recall the hierarchy of limits and role of Gouy–

Stodola law, stressed in Part I [1].

For a still stronger limit, other components of total

entropy source are included at the expense of a more

detailed input of information, but with the advantage

that the limit is closer to reality. For a sufficiently high

rank of the limit, it approaches the real work quite clo-

sely, but also the cost of the related information becomes

very large. What is important then, is a proper compro-

mise associated with the accepted limit of a finite rank.

8. Generalized exergies as measures of energy limits

However, up to now a precise set of conditions under

which Eqs. (65), (66) and (69) could serve as a suffi-

ciently exact model for economics of work-assisted sys-

tems is unknown. While our models are sufficient to

generate physical energy limits, modelling for the pur-

pose of economics is an essentially different issue that

requires complex network modelling and taking into

account many technical aspects. For these different

purposes, extended studies in finite-time thermodynam-

ics of complex real engines and heat pumps with heat

and mass transfer are also necessary [11]. In systems of

this sort humid gases and hygroscopic solids are utilized

by endoreversible heat pumps while exchanging mass

and heat. Should economic optimization be the case, a

thermal system could be optimized by the customary

approach which would require: a detailed network

modelling, inclusion of economic accounting, and oc-

casional imbedding of the optimized system into a

broader environment to include interacting chains. On

the other hand, in the scheme of physical energy limits,

described here, consideration of relation between irre-

versibility and costs is unnecessary [9].

Minimization of total work consumed over a finite

duration leads to a finite-time exergies of gas and solid,

Ag and AS. Formulae for such exergies follow from op-

timal work expressions, Eqs. (65), (66) and (69), when

the final states are identified with the states of equilib-

rium with the environment [11,12]. With the knowledge

of classical exergy, Arev, a numerical procedure can

generate data for both A and min Sr. Enhanced bounds

on work production and consumption are basic appli-

cations of finite-time exergies.

A finite-time exergy of humid gas, A, was defined [12]

which contains the classical exergy of this gas [5,6] in-

creased in the case of heat-pump mode by the product of

the environment temperature T e and the minimum en-

tropy production, Sr. For the engine mode, the classical

exergy decreases by the product of the environ-

ment temperature T e and the minimum of the entropy

production. For continuous changes of the gas state

A ¼ Arev � T e min Sr. The plus sign refers to processes

departing from the equilibrium and the minus sign to

processes approaching the equilibrium. The reversible

component in A agrees with a general formula for the

classical thermal exergy of a non-reacting mixture [5].

For a multistage process, a discrete counterpart of A can

be generated numerically; the computations should refer

to a sufficiently large N in order to accurately approxi-

mate the continuous exergy. The function A contains the

minimum entropy production min Sr in terms of end

thermodynamic states and nondimensional duration

(the number of mass transfer units). This is a nonclas-

sical term, vanishing for infinite durations. With the

knowledge of the classical exergy, Arev, the numerical

procedure can generate data for both A and min Sr.

In the notion of finite-time exergy enhanced bounds

are incorporated on the work production and con-

sumption. Yet, since effective analytical formulae for
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finding finite-time potentials of humid gas and moist

solid are unknown and difficulties of finding them per-

sist, numerical methods are crucial. For example, by

using a formula for the classical exergy of solid [5,6] and

Eq. (53) we can numerically generate the finite-time

work potential for the solid phase in the hygroscopic

regime.

By exploiting heat and mass transfer analogies [11],

we apply Eqs. (63) and (64) as proper formulas serving

to evaluate minimum Sr ¼ Rr, in operations with ther-

mal machines. A related condition is that the non-

dimensional time s ¼ g=G is based on the overall mass

transfer conductance gg ¼ kgA, whereas Carnot controls
are suitable variables with respect to which the mini-

mization of Sr is made. That procedure sufficies to

model well enough specific entropy production in

generalized thermal machines in which a fluid mixture

or polymer solution interacts with the environment

through generalized endoreversible engine or heat pump.

Similar approach is used to model generalized thermal

machines in which the moist solid interacts with the

environment through an endoreversible engine or heat

pump. In the case of solid approximation caused by this

procedure can be rough if the model ignores phase

changes and related entropy production, and, moreover,

concepts of transfer coefficients and of related conduc-

tances are not as much correct as those for fluids.

9. Remark on peculiarities of solar-assisted operations

It is an optimization procedure that automatically

eliminates the controlling (Carnot) parameters from Sr

thus leading finally to optimum work potential R, which

depends only on the initial and final states and the

process duration. In multistage processes the potential

depends also on total number of stages. However, the

main idea of the method using Carnot intensity variables

as controls is based on the identity of thermodynamic

equations describing the entropy production in pro-

cesses with and without work in terms of the control

variables T 0 and l0. This is, in fact, caused by abstract

nature of thermodynamic equations that are free from

the time variable and materials characteristics. On the

other hand, the complete identity of kinetic expressions,

that describe the entropy production and fluxes in pro-

cesses with and without work, holds only for linear ki-

netic models. In general nonlinear cases the identity is

not satisfied; thus the use of the method based on the

control variables T 0 and l0 requires a modification. This

is briefly described in [9] for solar assisted operations

that involve nonlinear models due to the radiative en-

ergy transfer. In nonlinear cases, equations that describe

overall kinetics are different in processes with and

without work, even if they both are expressed in terms of

Carnot controls T 0 and l0. While the full coincidence is

still attained at the ‘‘short circuit point’’ of the system,

beyond that point coefficients of overall kinetics become

dependent on controls (T 0 and l0) and form divergence is

observed between structures of both equations. Our

process description must take this divergence into ac-

count. For details, see [9,13].

10. Energy limits in living systems

Considerations and analyses on energy limits can be

extended to optimization in systems with living organ-

isms. In this work we only briefly focus on energy limits

associated with the idea of the extremum development

governed by the entropy-related criteria of evolution,

e.g. the so-called complexity [14]; this is where the

thermodynamic method developed here should find a

natural use. The idea of extremum development refers to

some recent information-theoretic models of multistage

living systems that are characterized by sequentially

evolving states [15]. The information concept is not only

appropriate to complex systems but is also well-quanti-

tatively defined [16]. Diverse models can serve to eval-

uate energy limits quantitatively, for this issue the reader

is referred to literature [17]. In this section we consider

only some basic, qualitative issues.

In living systems a nonequilibrium entropy has to be

applied, as, in any sufficiently general description of a

complex living system, we deal with an inherently non-

equilibrium system. Sometimes, for special paths, they

can achieve the equilibrium and derive equilibrium

conditions, but it is generally transition between two

nonequilibrium states that is of interest. This state of

affair implies an analogy with nonequilibrium statistical

physics. There, even if the process terminates at isoen-

ergetic equilibrium, the equilibrium conditions along

with Boltzmann distribution are derived from the

entropy maximum condition in a closed system, and

extremizing method uses entropy in an arbitrary mac-

roscopic state, not in the equilibrium state; see, e.g. [18].

Generally, however, the idea of maximum of a potential

function, which may even be more general than com-

plexity or nonequilibrium entropy, subject to given side

conditions or constraints is used [15].

Complex living systems have developed various

strategies to manipulate their self-organization in order

to satisfy the principle of minimum complexity increase.

Ultimately, however, the physical laws set limits to their

size, functioning and rate of development. For example,

the physical law of thermal conduction sets the size of

warmblooded aquatic animals which require a minimum

diameter (of ca. 15 cm) in order to survive in cold oceans

[19]. Species that survive in ecosystems are those that

funnel energy into their own production and reproduc-

tion and contribute to autocatalytic processes in the

ecosystem. Also, there are data that show that poorly
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developed ecosystems degrade the incoming solar energy

less effectively than more mature ecosystems [20]. The

cornerstone there is to view living systems as stable

structures increasing the degradation of the incoming

solar energy, while surviving in a changing and some-

times impredictable environment. All these structures

have one feature in common: they increase the systems

ability to dissipate the applied gradient in accordance

with the so-reformulated second law of thermodynamics

[20]. In all these situations the second law imposes

constraints that are necessary but not sufficient cause for

life itself. In fact, reexamination of thermodynamics

proves that the second law underlines and determines

the direction of many processes observed in the devel-

opment of living systems. As an ecosystem develops, it

becomes more effective in removing the exergy part in

the energy it captures, and this exergy is utilized to build

and support organization and structure. Time and its

derivative cycling play a key role in evolution of these

complex systems. Evolution itself is a time dependent

process and the understanding of cycling is of great

methodological and cognitive importance [20].

In particular, optimization theory of pulsating

physiological processes can shed some light on the basic

understanding of development and evolution [21]. Op-

timal strategies of streets tree networks and urban

growth can mimic development of living systems [22]. A

related paper displays thermodynamic behavior of living

systems during their development and evolution [23].

Living organisms are treated therein as multistage sys-

tems by a complexity criterion based on information-

theoretic entropy. Classical thermodynamic quantities

do not appear in these approaches, yet the statistical

model is governed by an extremum principle, which, as

in thermodynamics, implies extremal properties for a

potential. Discrete and nonlinear models describe dy-

namics in metric spaces that may be curvilinear. Some

features of living organisms can be predicted when de-

scribing their complex evolution in terms of variational

principles for shortest paths along with suitable trans-

versality conditions. In the related models quantities

similar to entropy production are extremized, and On-

sager-like symmetries are discovered in the discrete

models of development [15].

11. Final considerations

First of all we stress the observation that even the

nonNewtonian nature of heat and/or mass transfer

(when described in terms of Carnot intensities or primed

quantities) does not change the general thermodynamic

formalism. On the other hand, the nonNewtonian na-

ture influences the formal structure of the heat and mass

exchange kinetics only beyond their linear approxima-

tion. Since various industrial bodies may exhibit com-

plex nonNewtonian properties, the method is capable

of evaluating energy limits in arbitrarily complex mass

transfer and heating systems (with, e.g., drying bodies,

radiation fluids, polymers, etc.). This is a fundamental

point, which is also the feature that makes our results

essential. In fact, it is just complexity of rheological

properties of substances used in industry and practical

devices which makes our general results valuable in

practice.

Sometimes a scepticism is expressed whether the

principles based on finite-time thermodynamics can be

useful to optimize thermal systems with nonequilibrium

processes, especially systems of complex topology such

as thermal networks [24,25]. While a large portion of

these objections can be overcome [26], we shall not enter

here into this debate, as it is enough to recall the assertion

made in the introduction of Part I of this paper [1]. This

assertion states that an economic problem of the system

optimization and the physical problem of work limits for

a resource (considered here) are two different problems.

The real work supplied to a compressor at economically

optimal conditions may sometimes be dozen times larger

than the mechanical energy (exergy) limit associated with

the production of a key substance; this is a well-known

fact from the theory of Linde operation, for example

[8,27]. In the realm of energy limits, the trade-off between

the exploitation and investment costs and the problem of

investment reduction by admission of exergy losses are

most often irrelevant issues. Yet, at the interface of

thermodynamics with economics all issues related to the

trade-off are essential [28,29]. Moreover, the entropy

source minimization, restricted to interior of the physical

system considered, may have no relevance to an eco-

nomic optimum of a product yield, where some cumu-

lative generation criteria may be attributed to a valuable

final product [2]. On the other hand, these cumulative

criteria have little in common with physical limits on

energy consumption.

Our method does yield endoreversible and higher-

order generalizations of standard exergy. At the limits of

zeroth rank all processes are reversible, and only then

the method yields the standard exergy function. In

general, the method serves to evaluate enhanced energy

limits in highly nonequilibrium, kinetically driven pro-

cesses of mass and energy transfer. We stress hierarchi-

cal nature of the finite-time thermodynamic limits (FTT

limits), where endoreversible limits are one step better

than those derived from the classical exergy.

Of the two basic fields compared, exergy analysis

[2,5] and FTT [3], only the latter can systematically

include various concepts of contemporary irreversible

thermodynamics. (This inclusion is also possible in Be-

jan’s method of entropy generation minimization [33],

but it is not in the second law analyses). To evaluate

energy limits of the first rank, FTT acts in a seemingly

oversimplified manner: it cuts hierarhy of the limits at
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the level of endoreversibility (endoreversible exergies),

and often works with kinetic models based on ordinary

differential equations. The simplicity of these models

and an aggregated information on which FTT rests are

frequently the source of misunderstanding. Adversaries

of FTT commonly ignore the fact that the highly useful

notion of the classical exergy is associated with even

simpler models than endoreversible: the reversible ones.

In fact, however, limits of higher ranks correspond with

quite realistic models, and the potential of FTT for in-

corporating results from dissipative fluid mechanics or

nonequilibrium field thermodynamics has been shown

[30]. The role of FTT should become more pronounced

in the future because of its flexibility in generating irre-

versible limits of any order through the use of infor-

mation contained in the entropy generation. Its

potential is enhanced by the explicit use of the concept

of the process state and state control in the generalized

sense of process dynamics.

Actually most approaches based on second law an-

alyses are global; they frequently rely on the input and

output streams of a definite system. By elementary ex-

amples and calculations David [31] has shown that the

globality is a dangerous feature, which may lead to basic

errors in design. The positiveness of the global entropy

produced, rV , (corresponding to given inputs and out-

puts) does not prove that the process is physically pos-

sible. For example, for some global values of rV the

temperature profiles in a countercurrent condenser may

show a temperature cross and the required heat transfer

will actually not occur [31]. Similar effects are also

known for highly nonisothermal sorption, drying pro-

cesses and for chemical reactors [8]. Therefore, only lo-

cal approaches that link the differential balances with

kinetics are fully reliable. But such approaches are rare

in most second law analyses; consider [2,5,24]. Because

of this limitation such global analyses are more useful

for identifying improper processes than for proving that

an actual design will work. Yet second law analyses have

proven their usefulness by discovering inefficiencies in

existing large plants composed of simple subsystems

(objects) and in these subsystems themselves. Along with

FTT, Bejan’s method of the entropy generation mini-

mization (EGM) [32,33] has contributed significantly to

the development of analyses including the simultaneous

(local) treatment of balance and kinetics.

It is FTT that has introduced a well-defined concept

of state into the thermodynamic modelling of processes.

Moreover, this field introduced the rate penalty concept

and uses it in a systematic way for arbitrary processes,

not only for electrochemical cells, where it has been

known for a long time. Of the few novel theoretical

concepts of FTT, such as finite-time exergies and ex-

tended potentials [3,4], the former is now being exploited

to stress its value. The latter have actually been used

earlier in a number of engineering applications of exergy

to the optimization of thermal and separation processes

[3,8]. These approaches have produced some results that

help avoid basic errors in design; they show e.g. the re-

quirement of concentration of the transfer area into re-

gions of high process intensity [3].

It is FTT that contributed to the development of new

processes and/or operations [3]. In the case of simple

kinetics or when equilibrium stage concepts can be ap-

plied, second law analyses are capable of providing

several valuable results for new operations [27,34].

However, in spite of a very large number of works and a

few spectacular applications, little theoretical progress

has been achieved to date in classical second law ana-

lyses [2,5]. Design based on classical exergy analyses is

mainly justified when properties of equipment and sys-

tems configurations do not vary significantly. The

globality property of classical exergy analyses forces

them to use models that are not far from black box

models. For example, the vast area of heat pumps fre-

quently uses these analyses based on assumed rough

values for the performance coefficients of the various

component objects and carries information that is ba-

sically restricted to a variety of pictorial schemes [35].

The treatment of storage units and energy avoidance

systems involving classical second law analyses are too

often out of date, and none of them has even ap-

proached the rigour of the exact analysis of such systems

which extends the classical mathematical theory of re-

generators originated by Hausen [36]. While sufficient in

thermal engine theory, the use of constant, diagonal

resistances (linear theory without couplings) is insuffi-

cient for complex energy converters in which strong

nonlinearities and/or coupling effects are essential. The

lost work is decreased in a natural way in systems with

coupling; the magnitude of the effect depends on the

relative magnitude of the kinetic cross coefficients (as

compared to diagonal ones). Sometimes the effect can be

negligible, as is the case for, e.g., Soret mass transfer.

However, it becomes substantial for transport problems

with phase transitions, e.g. frost heave [37], and for

many processes of electrochemical and biochemical en-

ergy conversion [38]. The maximum efficiency depends

then on the degree of coupling; only ‘‘completely cou-

pled’’ systems can approach the second law efficiency of

unity as a limit. Coupling can sometimes be enhanced by

an optimization, change in the type of contacting, etc.

Until now these problems have only rarely been ap-

proached using second law analyses [5,24]. Incorporat-

ing nonlinear kinetics may also improve frequent

quantitative flaws of these analyses and make the effi-

ciencies computed more reliable. All this discussion

proves that the systematic use of kinetic information,

required in EGM and FTT methods, [33,3] will play an

essential role in any future progress.

In order to utilize in full the power of thermodynamic

analyses in engineering, one must often go beyond
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conventional second law analyses [31,39]. In chemical

process design the real limits on the reactor yield derive

from sources other and more restrictive than the second

law. Often they appear as constraints and inefficiencies

of available technology; these, however, may have con-

sequences that can be treated by thermodynamic ana-

lyses. For example, low overall thermal efficiencies can

be a thermodynamic consequence of the lack of a suit-

able catalyst. The limits related to usual catalysts can,

however, be overcome by the use of highly selective

catalysts (e.g. shape selective zeolite catalysts). They

integrate selective transport with catalysis in a way that

is not only energy efficient but also cheap [39]. Second

law analyses placed in the context of such problems can

play both a more subtle and a more useful role in

chemical engineering than they do now.

As approaches to complex system design based on

second law analyses have been developed the emphasis

has changed from exergy (energy) minimal to cost op-

timal units and networks [40]. While this reorienta-

tion does not constitute a real problem in FTT, second

law analyses (restricted to the availability and exergy

criteria) have a limited chance of proving their real

usefulness in such extended schemes. For example,

contemporary design of heat exchanger networks in-

volves real-life objectives that contain both a quantita-

tive part (cost of equipment, energy and resources) and

a qualitative part (safety, operability, controllability,

flexibility, etc.). The industrial problem is very complex

and involves a combinatorial approach to the match

between hot and cold streams, flow configuration choice,

equality and inequality constraints on the temperature

dependent properties, materials, pressure drop limita-

tions, etc. All this leads to the trend towards complex

thermoeconomies and requires abandonment of purely

thermodynamic concepts.

The mission and essence of chemical engineering is

‘‘to come up with processes to make materials wanted by

man––new or improved processes to replace older less

efficient ones, and processes to make completely new

materials’’ [41]. This is now being accomplished by in-

novations in new catalysts, new reaction pathways or

new contacting patterns. In a hydrogenation example

[41] the packed bed with the so-called supported liquid

catalyst replaces more conventional units (bubble col-

umns, spray columns, tubular reactors, etc.). The packed

bed contains ingeniously prepared porous catalyst pel-

lets with an extremely large internal surface. This idea

allows one to replace the tons of hot, expensive liquid

catalyst in the conventional units (which would cost

millions of dollars) with just a few grams of catalytic

liquid for the whole operation. This is just one of many

examples that illustrate the role of surfaces and thin

layers in contemporary chemical engineering. However,

the applications of second law analyses to such processes

are still in an embryonic state. In general, the irreversible

thermodynamics of surfaces and phase changes have

little been used within second law analyses. Their realm

is now limited to processes where the role of surface

effects is negligible or where these effects are purely re-

versible. Surface dissipation is, however, substantial in

many catalytic systems, surfactant layers and electro-

chemical systems. This situation must change if second

law thermodynamics is to play a significant role in

contemporary engineering and technology.
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